Deconfinement: Renormalized Polyakov Loops to Matrix Models

Adrian Dumitru (Frankfurt), Yoshitaka Hatta (RIKEN & BNL), Jonathan Lenaghan (Virginia), Kostas Orginos (RIKEN & MIT), & R.D.P. (BNL & NBI)

I. Review: Phase Transitions at T \neq 0, Lattice Results for N=3, nf = 0 \rightarrow 3

$$(N = \# colors, nf = \# flavors)$$

- 2. Bare Polyakov Loops, \forall representations R: factorization for $N \rightarrow \infty$
- 3. Renormalized Polyakov Loops
- 4. Numerical results from the lattice:

$$N=3$$
, $nf=0$: $R=3, 6, 8 (10?)$

5. Effective (matrix!) model for renormalized loops

Review of Lattice Results: N=3, nf = 0, 2, 2+1, 3

nf = 0: T deconf $\approx 270 \text{ MeV}$ pressure small for T < T_d like $N \rightarrow \infty$: p ~ 1 for T<T_d, p ~ N^2 for T>T_d (Thorn, 81) 5 p/T⁴ p_{SB}/T 3 Bielefeld 2 pure gauge T [MeV]

300

400

500

600

Even the order changes: first for nf=0 to "crossover" for nf=2+1

200

100

Flavor Independence

Perhaps: even for $nf \neq 0$, "transition" dominated by gluons

At $T \neq 0$: thermodynamics dominated by Polyakov loops

Three colors, pure gauge: weakly first order?

Latent heat:
$$\left. \frac{\Delta \epsilon}{\epsilon_{ideal}} \right|_{T=T_d^+} pprox \frac{1}{3}$$
 vs 4/3 in bag model. So?

 $\frac{m_{Debye}(T)}{m_{Debye}(0)}$

Bielefeld

(Some) correlation lengths grow by ~ 10!

$$\frac{\sigma(T_d^-)}{\sigma(0)} \approx \frac{m_{Debye}(T_d^+)}{m_{Debye}(1.5T_d)} \approx \frac{1}{10}$$

Deconfining Transition vs N: First order \forall N \geq 4

Lucini, Teper, Wenger '03: latent heat ~ N^2 for N= 3, 4, 6, 8

No data for $\sigma(T_d^-)$, $m_{Debye}(T_d^+)$ ls N

latent heat/N^2

Is $N \rightarrow \infty$ Gross-Witten?

Gross-Witten - First order but: $\sigma(T_d^-) = m_{Debye}(T_d^+) = 0$

Wilson Lines at $T \neq 0$

Always: "pure" SU(N) gauge, no dynamical quarks (nf = 0)

Imaginary time formalism: $\tau:0\to 1/T$

Wilson line in fundamental representation:

$$\mathbf{L}_{N}(\vec{x},\tau) = \mathcal{P} \exp \left(ig \int_{0}^{\tau} A_{0}^{a}(\vec{x},\tau') t_{N}^{a} d\tau' \right)$$

= propagator for "test quark" at x, moving up in (imaginary) time

$$D_0 \mathbf{G}_N = \delta(\tau) \Longrightarrow \mathbf{G}_N = \mathbf{L}_N \theta(\tau)$$

 $\mathbf{L}_{\overline{N}} = \mathbf{L}_N^\dagger$ = propagator "test anti-quark" at x, moving back in time

$$\mathbf{L}_N \ \epsilon \ SU(N): \ \mathbf{L}_N^\dagger \mathbf{L}_N = \mathbf{1}_N \ , \ \det(\mathbf{L}_N) = 1$$
 (Mandelstam's constraint)

Polyakov Loops

Wrap all the way around in T: $\mathbf{L}_N(\vec{x}, 1/T) \to \mathbf{L}_N$

Polyakov loop = normalized loop = gauge invariant

$$\ell_N = \frac{1}{N} \text{ tr } \mathbf{L}_N$$

Confinement: test quarks don't propagate

$$\langle \ell_N \rangle = 0$$
 , $T < T_{deconf}$

Deconfinement: test quarks propagate

$$\langle \ell_N \rangle = e^{i\theta} |\langle \ell_N \rangle| \neq 0 \quad , \quad T > T_d$$

 $e^{iN\theta}=1$: Spontaneous breaking of global Z(N) = center SU(N) 't Hooft '79, Svetitsky and Yaffe, '82

Adjoint Representation

Adjoint rep. = "test meson"

$$\operatorname{tr} \mathbf{L}_{adj} = |\operatorname{tr} \mathbf{L}_N|^2 - 1$$

Note: both coefficients ~ I

Check: $\mathbf{L}_N = \mathbf{1}_N \to \operatorname{tr} \mathbf{L}_{adj} = N^2 - 1$ = dimension of the rep.

Adjoint loop: divide by dim. of rep.

$$\ell_{adj} = \frac{1}{N^2 - 1} \operatorname{tr} \mathbf{L}_{adj}$$

At large N,

$$\ell_{adj} = |\ell_N|^2 + O\left(\frac{1}{N^2}\right)$$
 = factorization

Two-index representations

2-index rep.'s = "di-test quarks" = symmetric or anti-sym.

$$\operatorname{tr} \mathbf{L}_{(N^2 \pm N)/2} = \frac{1}{2} \left(\left(\operatorname{tr} \mathbf{L}_N \right)^2 \pm \operatorname{tr} \mathbf{L}_N^2 \right)$$

Di-quarks: two qks wrap once in time, or one qk wraps twice

Again: both coeff's ~ 1 . Subscript = dimension of rep.'s = $(N^2 \pm N)/2$

For arbitrary rep. R, if d_R = dimension of R,

$$\ell_R \equiv \frac{1}{d_R} \text{ tr } \mathbf{L}_R$$

For 2-index rep.'s \pm , as $N \rightarrow \infty$,

$$\ell_{\pm} \sim \ell_N^2 + O\left(rac{1}{N}
ight)$$
 corr.'s I/N, not I/N^2: $\sim rac{1}{N^2} {
m tr} {f L}_N^2$

Representations, N=3

Label rep.'s by their dimension:

```
fundamental = 3
```

symmetric
$$2$$
-index = 6

special to N=3: anti-symmetric 2-index = $\overline{3}$

$$\ell_{10} = \frac{1}{10} \left(\text{tr } \mathbf{L}_3 \text{ tr } \mathbf{L}_3^2 + 1 \right)$$

Measured 3, 6, 8, & 10 on lattice

Loops at Infinite N

"Conjugate" rep.'s of Gross & Taylor '93: $\mathbf{L}_N ext{ and } \mathbf{L}_{\overline{N}} = \mathbf{L}_N^\dagger$

If all test qks and test anti-qks wrap once and only once in time,

$$\operatorname{tr} \mathbf{L}_R = \#(\operatorname{tr} \mathbf{L}_N)^{p_+} (\operatorname{tr} \mathbf{L}_N^{\dagger})^{p_-} + \dots$$

Many other terms:

#' tr
$$\mathbf{L}_{N}^{2}$$
 (tr \mathbf{L}_{N}) $^{p_{+}-2}$ (tr \mathbf{L}_{N}^{\dagger}) $^{p_{-}}+\ldots$

dimension R = $d_R \sim N^{p_++p_-}$

As $N \rightarrow \infty$, if #, #'... are all of order I, first term dominates, and:

$$\ell_R \sim (\ell_N)^{p_+} \left(\ell_{\overline{N}}\right)^{p_-} + O\left(\frac{1}{N}\right)$$

Normalization: if $\ \ell_N = \ell_{\overline{N}} = 1 \ , \ \ell_R = 1 \ orall \ R$

Factorization at Infinite N

In the deconfined phase, the fundamental loop condenses:

$$\langle \ell_N \rangle = e^{i\theta} |\langle \ell_N \rangle| \neq 0 \quad , \quad T > T_d \quad , \quad e^{iN\theta} = 1$$

Makeenko & Migdal '80: at $N=\infty$, expectation values factorize:

$$\langle \ell_R \rangle = \langle \ell_N \rangle^{p_+} \langle \ell_{\overline{N}} \rangle^{p_-} + O(N^{-1})$$
$$= e^{ie_R \theta} |\langle \ell_N \rangle|^{p_+ + p_-} + O(N^{-1})$$

Phase trivial: $e_R=p_+-p_-=Z(N)$ charge of R, defined modulo N Magnitude not trivial: highest powers of $|\langle\ell_N\rangle|$ win.

At infinite N, any loop order parameter for deconfinement, for all e_R For adjoint loop: Damgaard '87 + ...

N.B.:
$$\langle \ell_{test\ baryon} \rangle = \langle \ell_N \rangle^{N-1} \langle \operatorname{tr} \mathbf{L}_N^2 / N \rangle$$

"Mass" renormalization for loops

Loop = propagator for infinitely massive test quark.

Still has mass renormalization, proportional to length of loop:

$$\langle \ell_R \rangle = \exp\left(-m_R/T\right)$$
 , $m_R \equiv f_R^{div}/a$

 $a = lattice spacing. m_R = 0$ with dimensional regularization, but so what?

To I-loop order in 3+1 dimensions:

$$\langle \ell_R \rangle - 1 \sim -\left(\frac{1}{T}\right) C_R g^2 \int^{1/a} \frac{d^3k}{k^2} \sim -\frac{C_R g^2}{aT}$$

Divergences order by order in g². Only power law divergence for straight loops in 3+1 dim.'s.; corrections ~aT.

In 3+1 dim.'s, loops with cusps do have logarithmic divergence.

In 2+1 dim.'s, straight loops also have log. div.'s. (cusps do not)

Renormalization of Wilson Lines

Gervais and Neveu '80; Polyakov '80; Dotsenko & Vergeles '80

For irreducible representations R, renormalized Wilson line:

$$\widetilde{\mathbf{L}}_R = \mathbf{L}_R/Z_R$$
 , $Z_R \equiv \exp(-m_R/T)$

 Z_R = renormalization constant for Wilson line

As R's irreducible, different rep's don't mix under renormalization

No anomalous dim. for Wilson line: no condition to fix Z_R at some scale

For all local, composite operators, Z's independent of T

Wilson line = non-local composite operator:

 Z_R temperature dependent: from I/T, and m_R

(numerically, from simulations)

Renormalization of Polyakov Loops

Renormalized loop:
$$\ell_R = \ell_R/Z_R$$

Constraint for bare loop:
$$|\ell_R| \leq 1$$

For renormalized loop:
$$|\widetilde{\ell}_R| \leq Z_R^{-1}$$

If
$$m_R > 0 \ \forall \ T, \ Z_R \to 0$$
 as a $\to 0$, no constraint on ren.'d loop

E.g.: as $T \rightarrow \infty$, ren'd loops approach I from above: (Gava & Jengo '81)

$$\langle \widetilde{\ell}_R \rangle - 1 \sim -\left(\frac{1}{T}\right) C_R g^2 \int \frac{d^3k}{k^2 + m_{Debye}^2} \sim (-) C_R g^2 (-) (m_{Debye}^2)^{1/2}$$

$$\langle \widetilde{\ell}_R \rangle \approx \exp\left(+\frac{C_R}{N} \frac{(g^2 N)^{3/2}}{8\pi\sqrt{3}}\right)$$

Smooth large N limit:
$$C_R pprox \frac{N}{2}(p_+ + p_-) + O(1)$$

Why all representations?

Previously: concentrated on loops in fund. and adj. rep.'s, esp. with cusps.

At $T \neq 0$, natural for loops, at a given point in space, to wrap around in T many times. Most general gauge-invariant term:

$$\mathcal{G} = (\operatorname{tr} \mathbf{L}_{R_1^+}^{q_1^+})^{n_1^+} (\operatorname{tr} \mathbf{L}_{R_2^+}^{q_2^+})^{n_2^+} \dots (\operatorname{tr} (\mathbf{L}_{R_1^-}^{\dagger})^{q_1^-})^{n_1^-} \dots$$

By group theory (the character expansion):

$$\mathcal{G} = \Sigma_R c_R \ell_R$$

It is only consistent to renormalize this expression, linear in the loops.

If all m_R > 0, at a = 0:
$$\mathcal{G} = c_1$$

Discovered numerically. Irrelevant: physics is in the ren.'d loops.

Lattice Regularization of Polyakov Loops

Basic idea: compare two lattices. Same temperature, different lattice spacing If a << I/T, ren'd quantities the same.

 $N_t = \#$ time steps = I/(aT) changes between the two lattices: get Z_R

 $N_s = \#$ spatial steps; keep N_t/N_s fixed to minimize finite volume effects

$$\log(|\langle \ell_R \rangle|) = -f_R^{div} N_t + f_R^{cont} + f_R^{lat} \frac{1}{N_t} + \dots$$

$$f_R^{div} o Z_R \qquad f_R^{cont} o \langle \widetilde{\ell}_R
angle \qquad {\sf Numerically,} \quad f_R^{lat} pprox 0$$

Each f_R is computed at fixed T. As such, there is nothing to adjust.

N.B.: also finite volume corrections from zero modes; to be computed.

Explicit exponentiation of divergences to $\sim g^4$ at $a \neq 0$:

Curci, Menotti, & Paffuti, '85

Lattice Results

Standard Wilson action, three colors, quenched.

$$N_t = 4, 6, 8, \&10.$$
 $N_s = 3N_t$

Lattice coupling constant $\beta = 6/g^2$

 β_d = coupling for deconfining transition: $=\beta_d(N_T)!$

Non-perturbative renormalization:

$$\log(T/T_d) = 1.7139(\beta - \beta_d) + \dots$$

To get the same T/T_d @ different N_t, must compute at different β !

Calculate grid in β , interpolate to get the same T/T_d at different N_t

N.B.: Method same with dynamical quarks

Measured ℓ_3 , ℓ_6 , ℓ_8 , & ℓ_{10} (No signal for 10 for N_t > 4)

Bare $|\ell_3|$ vs N_t

Divergent mass $m_R(T)$

N.B.: all $m_R > 0 \ \forall T$

OK for $T > 1.5 T_d$;

Fails for $T_d \to 1.5T_d : m_8 > m_6$

Renormalized Polyakov Loops

No signal of decuplet loop at $N_t > 4$; C_10 big, so bare loop small

Results for Ren'd Polyakov Loops

$$T < T_d : Z(3) \text{ symmetry} \Rightarrow \langle \widetilde{\ell}_3 \rangle = \langle \widetilde{\ell}_6 \rangle = 0$$

But
$$Z(3)$$
 charge $e_8 = 0 \Rightarrow \langle \widetilde{\ell}_8 \rangle \neq 0$ for $T < T_d$.

Numerically:
$$\langle \widetilde{\ell}_8 \rangle = small \# \frac{1}{N^2} \approx 0, T < T_d$$

Like large N: Greensite & Halpern '81, Damgaard '87...

(Similar to measuring adjoint string tension in confined phase)

Transition first order →ren.'d loops jump at T_d:

$$|\langle \widetilde{\ell}_3 \rangle| \approx .4 \pm .05$$
, $T = T_d^+$

 $T > T_d$: Find ordering: 3 > 8 > 6. But compute difference loops:

$$\delta \widetilde{\ell}_6 \equiv \langle \widetilde{\ell}_6 \rangle - \langle \widetilde{\ell}_3 \rangle^2 \sim O(1/N)$$

$$\delta \widetilde{\ell}_8 \equiv \langle \widetilde{\ell}_8 \rangle - |\langle \widetilde{\ell}_3 \rangle|^2 \sim O(1/N^2)$$

Bielefeld's Renormalized Polyakov Loop

vs I-pt fnc at several N_t

Bielefeld's Ren'd Polyakov Loop, N=2

Transition second order: $\Rightarrow |\langle \widetilde{\ell}_2 \rangle| = 0 @ T = T_d^+$

Difference Loops: Test of Factorization at N=3

Details of spikes near T_d?

Sharp octet spike

Broad sextet spike

$$|\delta \widetilde{\ell}_8| \sim O(1/N^2) \le .12 \; ; \; |\delta \widetilde{\ell}_6| \sim O(1/N) \le .25$$

Bare Loops don't exhibit Factorization

Bare octet
difference
loop/bare
octet loop:
violations
of factor.
50% @
Nt =4
200% @
Nt = 10.

Mean Field Theory for Fundamental Loop

At large N, if fundamental loop condenses, factorization \Rightarrow all other loops

This is a mean field type relation; implies mean field for $\langle \widetilde{\ell}_N \rangle$?

General effective lagrangian for renormalized loops:

Choose basic variables as Wilson lines, not Polykov loops: (i = lattice sites)

$$\mathcal{Z} = \int \Pi d\mathbf{L}_N(i) \exp(-\mathcal{S}(\ell_R(i))) \qquad \mathbf{L}_N(i) \in SU(N)$$

Loops automatically have correct Z(N) charge, and satisfy factorization.

Effective action Z(N) symmetric. Potential terms (starts with adjoint loop):

$$\mathcal{W} = \sum_{i} \sum_{R}^{e_R = 0} \gamma_R \ell_R(i)$$

and next to nearest neighbor couplings:

$$S_R = -(N^2/3) \Sigma_{i,\hat{n}} \Sigma_{R,R'}^{e_R + e_{R'} = 0} \beta_{R,R'} \operatorname{Re} \ell_R(i) \ell_{R'}(i + \hat{n}) .$$

In mean field approximation, that's it. (By using character exp.)

Matrix Model (=Mean Field) for N=3

Simplest possible model: only $\beta_{3,3^*} \equiv \beta_3 \neq 0$ (Damgaard, '87)

$$\langle \ell_3 \rangle = \int d\mathbf{L} \ \ell_3 \ \exp(18\beta_3 \langle \ell_3 \rangle \text{Re} \ell_3) / \int d\mathbf{L} \ \exp(18\beta_3 \langle \ell_3 \rangle \text{Re} \ell_3)$$

Fit
$$\beta_3(T)$$
 to get $\langle \widetilde{\ell}_3 \rangle(T)$

Find $\beta_3(T)$ linear in T

Now compute loops in other representations using this $\beta_3(T)$

Matrix Model: N=3

Approximate agreement for 6 & 8. Predicts 10 should be there.

Solid lines = matrix model. Points = lattice data for renormalized loops.

Difference Loops for Matrix Model, N=3

Sextet diff. loop > octet, in agreement with I/N exp.

But much broader, and much smaller, than the lattice data!

Matrix Model, N=∞, and Gross-Witten

Consider mean field, where the *only* coupling is $\beta_{N,N^*} \equiv \beta$

Gross & Witten '80, Kogut, Snow, & Stone '82, Green & Karsch '84

At $N=\infty$, mean field potential is non-analytic, given by two different potentials:

$$\mathcal{V}_{mf}^{-} = \beta(1-\beta)\ell^{2} \quad , \quad \ell \le 1/(2\beta)$$

$$\mathcal{V}_{mf}^{+} = -2\beta\ell + \beta\ell^{2} + \frac{1}{2}\log(2\beta\ell) + \frac{3}{4} \quad , \quad \ell \ge 1/(2\beta)$$

For fixed β , the potential is everywhere continuous, but its *third* derivative is not, at the point $\ell = 1/(2\beta)$

$$\begin{split} \beta &\leq 1: \langle \ell \rangle = 0 \quad \text{= confined phase} \\ \beta &\geq 1: \langle \ell \rangle \neq 0 \quad \text{= deconfined phase} \\ \langle \ell \rangle &= \frac{1}{2} \left(1 + \sqrt{\frac{\beta - 1}{\beta}} \right): \\ \langle \ell \rangle &\to 1 \;,\; \beta \to \infty \end{split}$$

Gross-Witten Transition: "Critical" First Order

Transition first order. Order parameter jumps: 0 to 1/2. Also, latent heat \neq 0:

$$\mathcal{V}_{mf}^{-} = 0 \; , \; \beta \le 1 \; , \; \; \mathcal{V}_{mf}^{+} \approx -(\beta - 1)/4 \; , \; \beta \to 1^{+}$$

But masses vanish, asymmetrically, at the transition!

$$m_{-}^{2} \approx 2(1-\beta)$$
 , $\beta \to 1^{-}$. $m_{+}^{2} \approx 4\sqrt{\beta-1}$, $\beta \to 1^{+}$.

If β ~T, and the deconfining transition is Gross-Witten at N= ∞ , then the string tension and the Debye mass vanish at T_d as:

$$\sigma(T) \sim (T_d - T)^{1/2} , T \to T_d^ m_{Debye}(T) \sim (T - T_d)^{1/4} , T \to T_d^+$$

Other terms? Adjoint loop in potential just shifts β .

Higher terms in potential do seem to give ordinary 1st order transitions.

Lattice: N=3 close to Gross-Witten. N>3?

To do

Two colors: matching critical region near T_d to mean field region about T_d?

Higher rep.'s, factorization at N=2?

Three colors: better measurements, esp. near T_d: $\langle \widetilde{\ell}_3 \rangle (T_d^+) \dots$

"Spikes" in sextet and octet loops? Fit to matrix model?

For decuplet loop, use "improved" Wilson line? $\int d\Omega_{ec{n}} \sim ext{HTL's}$

$$\mathbf{L}_{\mathrm{imp}} = \int d\Omega_{\vec{n}} \, \exp(\,ig \int (A_0 + \kappa a \vec{E} \cdot \vec{n}) d\tau)$$

Four colors: is transition Gross-Witten? Or is N=3 an accident?

With dynamical quarks: method to determine ren.'d loop(s) identical

Is
$$\langle \widetilde{\ell}_R \rangle \left(\frac{T}{T_c} \right)_{with \text{ quarks}} \approx \langle \widetilde{\ell}_R \rangle \left(\frac{T}{T_d} \right)_{pure \text{ gauge}}$$
?